Cutting-Planes for Optimization of Convex Functions over Nonconvex Sets
نویسندگان
چکیده
We derive linear inequality characterizations for sets of the form conv{(x, q) ∈ R×R : q ≥ Q(x), x ∈ R − int(P )} where Q is convex and differentiable and P ⊂ R. We show that in several cases our characterization leads to polynomial-time separation algorithms that operate in the original space of variables, in particular when Q is a positive-definite quadratic and P is a polyhedron or an ellipsoid.
منابع مشابه
Nonconvex Nonsmooth Minimization via Cutting Planes and Feasible Direction In- terior Point Method
Nowadays, solving nonsmooth (not necessarily differentiable) optimization problems plays a very important role in many areas of industrial applications. Most of the algorithms developed so far deal only with nonsmooth convex functions. In this paper, we propose a new algorithm for solving nonsmooth optimization problems that are not assumed to be convex. The algorithm combines the traditional c...
متن کاملGlobal optimization of nonconvex problems with multilinear intermediates
We consider global optimization of nonconvex problems containing multilinear functions. It is well known that the convex hull of a multilinear function over a box is polyhedral, and the facets of this polyhedron can be obtained by solving a linear optimization problem (LP). When used as cutting planes, these facets can significantly enhance the quality of conventional relaxations in general-pur...
متن کاملA polyhedral branch-and-cut approach to global optimization
A variety of nonlinear, including semidefinite, relaxations have been developed in recent years for nonconvex optimization problems. Their potential can be realized only if they can be solved with sufficient speed and reliability. Unfortunately, state-of-the-art nonlinear programming codes are significantly slower and numerically unstable compared to linear programming software. In this paper, ...
متن کاملA Minimization Algorithm with Approximation of an Epigraph of the Objective Function and a Constraint Set
An algorithm is suggested for solving a convex programming problem which belongs to a class of cutting methods. In the algorithm an epigraph of the objective function and a feasible solutions set of the problem are embedded into some auxiliary sets to construct iteration points. Since these embedded sets are constructed as polyhedral sets in the algorithm, then each iteration point is found by ...
متن کاملMinimizing Nonconvex Nonsmooth Functions via Cutting Planes and Proximity Control
We describe an extension of the classical cutting plane algorithm to tackle the unconstrained minimization of a nonconvex, not necessarily differentiable function of several variables. The method is based on the construction of both a lower and an upper polyhedral approximation to the objective function and it is related to the use of the concept of proximal trajectory. Convergence to a station...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 24 شماره
صفحات -
تاریخ انتشار 2014